home *** CD-ROM | disk | FTP | other *** search
-
-
-
- DDDDSSSSYYYYGGGGVVVV((((3333FFFF)))) DDDDSSSSYYYYGGGGVVVV((((3333FFFF))))
-
-
-
- NNNNAAAAMMMMEEEE
- DSYGV - compute all the eigenvalues, and optionally, the eigenvectors of
- a real generalized symmetric-definite eigenproblem, of the form
- A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x
-
- SSSSYYYYNNNNOOOOPPPPSSSSIIIISSSS
- SUBROUTINE DSYGV( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK, LWORK,
- INFO )
-
- CHARACTER JOBZ, UPLO
-
- INTEGER INFO, ITYPE, LDA, LDB, LWORK, N
-
- DOUBLE PRECISION A( LDA, * ), B( LDB, * ), W( * ), WORK( * )
-
- PPPPUUUURRRRPPPPOOOOSSSSEEEE
- DSYGV computes all the eigenvalues, and optionally, the eigenvectors of a
- real generalized symmetric-definite eigenproblem, of the form
- A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and B
- are assumed to be symmetric and B is also
- positive definite.
-
-
- AAAARRRRGGGGUUUUMMMMEEEENNNNTTTTSSSS
- ITYPE (input) INTEGER
- Specifies the problem type to be solved:
- = 1: A*x = (lambda)*B*x
- = 2: A*B*x = (lambda)*x
- = 3: B*A*x = (lambda)*x
-
- JOBZ (input) CHARACTER*1
- = 'N': Compute eigenvalues only;
- = 'V': Compute eigenvalues and eigenvectors.
-
- UPLO (input) CHARACTER*1
- = 'U': Upper triangles of A and B are stored;
- = 'L': Lower triangles of A and B are stored.
-
- N (input) INTEGER
- The order of the matrices A and B. N >= 0.
-
- A (input/output) DOUBLE PRECISION array, dimension (LDA, N)
- On entry, the symmetric matrix A. If UPLO = 'U', the leading N-
- by-N upper triangular part of A contains the upper triangular
- part of the matrix A. If UPLO = 'L', the leading N-by-N lower
- triangular part of A contains the lower triangular part of the
- matrix A.
-
- On exit, if JOBZ = 'V', then if INFO = 0, A contains the matrix Z
- of eigenvectors. The eigenvectors are normalized as follows: if
- ITYPE = 1 or 2, Z**T*B*Z = I; if ITYPE = 3, Z**T*inv(B)*Z = I.
- If JOBZ = 'N', then on exit the upper triangle (if UPLO='U') or
-
-
-
- PPPPaaaaggggeeee 1111
-
-
-
-
-
-
- DDDDSSSSYYYYGGGGVVVV((((3333FFFF)))) DDDDSSSSYYYYGGGGVVVV((((3333FFFF))))
-
-
-
- the lower triangle (if UPLO='L') of A, including the diagonal, is
- destroyed.
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(1,N).
-
- B (input/output) DOUBLE PRECISION array, dimension (LDB, N)
- On entry, the symmetric matrix B. If UPLO = 'U', the leading N-
- by-N upper triangular part of B contains the upper triangular
- part of the matrix B. If UPLO = 'L', the leading N-by-N lower
- triangular part of B contains the lower triangular part of the
- matrix B.
-
- On exit, if INFO <= N, the part of B containing the matrix is
- overwritten by the triangular factor U or L from the Cholesky
- factorization B = U**T*U or B = L*L**T.
-
- LDB (input) INTEGER
- The leading dimension of the array B. LDB >= max(1,N).
-
- W (output) DOUBLE PRECISION array, dimension (N)
- If INFO = 0, the eigenvalues in ascending order.
-
- WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
- On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
-
- LWORK (input) INTEGER
- The length of the array WORK. LWORK >= max(1,3*N-1). For
- optimal efficiency, LWORK >= (NB+2)*N, where NB is the blocksize
- for DSYTRD returned by ILAENV.
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument had an illegal value
- > 0: DPOTRF or DSYEV returned an error code:
- <= N: if INFO = i, DSYEV failed to converge; i off-diagonal
- elements of an intermediate tridiagonal form did not converge to
- zero; > N: if INFO = N + i, for 1 <= i <= N, then the leading
- minor of order i of B is not positive definite. The
- factorization of B could not be completed and no eigenvalues or
- eigenvectors were computed.
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- PPPPaaaaggggeeee 2222
-
-
-
-